Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. The next-to-last equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both equations differ ...

  3. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Average acceleration. Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠dr dt⁠ ), and its acceleration (the second derivative of r, a = ⁠d2r dt2⁠ ), and time t. Euclidean vectors in 3D are denoted throughout in bold.

  5. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    Projectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth 's surface, and moves along a curved path (a trajectory) under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air ...

  6. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    Comoving distance and proper distance. Comoving distance is the distance between two points measured along a path defined at the present cosmological time. For objects moving with the Hubble flow, it is deemed to remain constant in time. The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following ...

  7. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    In the standard inertial coordinates of special relativity, for unidirectional motion, proper acceleration is the rate of change of proper velocity with respect to coordinate time . In an inertial frame in which the object is momentarily at rest, the proper acceleration 3-vector, combined with a zero time-component, yields the object's four ...

  8. Space travel under constant acceleration - Wikipedia

    en.wikipedia.org/wiki/Space_travel_under...

    The distance traveled, under constant proper acceleration, from the point of view of Earth as a function of the traveler's time is expressed by the coordinate distance x as a function of proper time τ at constant proper acceleration a. It is given by: [8] [9]

  9. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Gravitational acceleration. In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag ). This is the steady gain in speed caused exclusively by gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the ...