Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular ...

  3. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between base and apex is the height. The area of a triangle equals one half the product of height and base length.

  4. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠ ⁠ ⁠ ⁠ ⁠ ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, the area ⁠ ⁠ is [ 1] It is named after first-century engineer Heron of Alexandria (or Hero) who proved it in his ...

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  6. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Any triangle subdivides its bounding box into the triangle itself and additional right triangles, and the areas of both the bounding box and the right triangles are easy to compute. Combining these area computations gives Pick's formula for triangles, and combining triangles gives Pick's formula for arbitrary polygons. [7] [8] [13]

  7. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of d𝜃 at the centre of the circle), each with an area of ⁠ 1 / 2 ⁠ · r 2 · d𝜃 (derived from the expression for the area of a triangle: ⁠ 1 / 2 ⁠ · a · b · sin𝜃 ...

  8. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace formula. The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2] It is called the shoelace formula because of the constant cross-multiplying for the ...

  9. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    The area of the triangle is times the length of any side times the perpendicular distance from the side to the centroid. [ 15 ] A triangle's centroid lies on its Euler line between its orthocenter H {\displaystyle H} and its circumcenter O , {\displaystyle O,} exactly twice as close to the latter as to the former: [ 16 ] [ 17 ]