Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A drawing of a graph. In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called arcs, links or lines ).

  3. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with six vertices and seven edges. In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called vertices (also called nodes or points) and each of the related pairs of vertices ...

  4. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  5. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    Definition. In formal terms, a directed graph is an ordered pair G = (V, A) where [1] A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A ), arrows, or directed lines. It differs from an ordinary or undirected graph, in that the latter is defined in terms ...

  6. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v .

  7. Graph labeling - Wikipedia

    en.wikipedia.org/wiki/Graph_labeling

    In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.

  8. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    Path (graph theory) A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).

  9. Tournament (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tournament_(graph_theory)

    In graph theory, a tournament is a directed graph with exactly one edge between each two vertices, in one of the two possible directions. Equivalently, a tournament is an orientation of an undirected complete graph. (However, as directed graphs, tournaments are not complete: complete directed graphs have two edges, in both directions, between ...