Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    t. e. In mathematics, an ordinary differential equation ( ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown (s) consists of one (or more) function (s) and involves the derivatives of those functions. [ 1] The term "ordinary" is used in contrast with partial differential equations ...

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real -valued function. The most basic version starts with a real-valued function f, its derivative f ′, and ...

  4. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  5. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    Laplace's equation in spherical coordinates is: [ 4] Consider the problem of finding solutions of the form f(r, θ, φ) = R(r) Y(θ, φ). By separation of variables, two differential equations result by imposing Laplace's equation: The second equation can be simplified under the assumption that Y has the form Y(θ, φ) = Θ (θ) Φ (φ).

  6. Abel's identity - Wikipedia

    en.wikipedia.org/wiki/Abel's_identity

    In mathematics, Abel's identity (also called Abel's formula [1] or Abel's differential equation identity) is an equation that expresses the Wronskian of two solutions of a homogeneous second-order linear ordinary differential equation in terms of a coefficient of the original differential equation. The relation can be generalised to n th-order ...

  7. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The Chebyshev polynomials form a complete orthogonal system. The Chebyshev series converges to f(x) if the function is piecewise smooth and continuous. The smoothness requirement can be relaxed in most cases – as long as there are a finite number of discontinuities in f(x) and its derivatives.

  8. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Karush–Kuhn–Tucker conditions. In mathematical optimization, the Karush–Kuhn–Tucker ( KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests (sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

  9. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The same illustration for The midpoint method converges faster than the Euler method, as . Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to ...