Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [ note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  4. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    Subtracting −0 is also trivial. The result can be only one of two cases. In case 1, operand 1 is −0 so the result is produced simply by subtracting 1 from 1 at every bit position. In case 2, the subtraction will generate a value that is 1 larger than operand 1 and an end-around borrow. Completing the borrow generates the same value as ...

  5. Orders of magnitude (data) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(data)

    2 0: bit: 10 0: bit 1 bit – 0 or 1, false or true, Low or High (a.k.a. unibit) 1.442695 bits (log 2 e) – approximate size of a nat (a unit of information based on natural logarithms) 1.5849625 bits (log 2 3) – approximate size of a trit (a base-3 digit) 2 1: 2 bits – a crumb (a.k.a. dibit) enough to uniquely identify one base pair of DNA

  6. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman coding. Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not ...

  7. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    In 1930, Lev Schnirelmann proved that any natural number greater than 1 can be written as the sum of not more than C prime numbers, where C is an effectively computable constant; see Schnirelmann density. [11] [12] Schnirelmann's constant is the lowest number C with this property. Schnirelmann himself obtained C < 800 000.

  8. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    The metric space of length- n binary strings, with the Hamming distance, is known as the Hamming cube; it is equivalent as a metric space to the set of distances between vertices in a hypercube graph. One can also view a binary string of length n as a vector in by treating each symbol in the string as a real coordinate; with this embedding, the ...

  9. Largest known prime number - Wikipedia

    en.wikipedia.org/wiki/Largest_known_prime_number

    A prime number is a natural number greater than 1 with no divisors other than 1 and itself. According to Euclid's theorem there are infinitely many prime numbers, so there is no largest prime. Many of the largest known primes are Mersenne primes , numbers that are one less than a power of two, because they can utilize a specialized primality ...