Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [ note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  3. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1][ 2][ 3] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most single-digit multiplications. It is therefore asymptotically faster than the ...

  4. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  5. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    Subtracting −0 is also trivial. The result can be only one of two cases. In case 1, operand 1 is −0 so the result is produced simply by subtracting 1 from 1 at every bit position. In case 2, the subtraction will generate a value that is 1 larger than operand 1 and an end-around borrow. Completing the borrow generates the same value as ...

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The variables a and b alternate holding the previous remainders r k−1 and r k−2. Assume that a is larger than b at the beginning of an iteration; then a equals r k−2, since r k−2 > r k−1. During the loop iteration, a is reduced by multiples of the previous remainder b until a is smaller than b. Then a is the next remainder r k.

  7. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    This conjecture is known as Lemoine's conjecture and is also called Levy's conjecture. The Goldbach conjecture for practical numbers, a prime-like sequence of integers, was stated by Margenstern in 1984, [ 32] and proved by Melfi in 1996: [ 33] every even number is a sum of two practical numbers.

  8. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Graph of the number of primes ending in 1, 3, 7, and 9 up to n for n < 10,000. Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.

  9. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3] Rounding errors are due to inexactness in the representation of real numbers and the ...