Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = dr dt ), and its acceleration (the second derivative of r, a = d2r dt2 ), and time t. Euclidean vectors in 3D are denoted throughout in bold.

  3. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    L T−1. In kinematics, the speed (commonly referred to as v) of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity. [1] The average speed of an object in an interval of time is the distance travelled by the object divided by the ...

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Equations for a falling body. A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth -bound conditions. Assuming constant acceleration g due to Earth’s gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth’s ...

  5. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame ...

  6. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.

  7. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...

  8. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    Over long periods of time, the dynamics are complicated by general relativity, dark energy, inflation, etc., as explained above. Hubble length. The Hubble length or Hubble distance is a unit of distance in cosmology, defined as cH −1 — the speed of light multiplied by the Hubble time. It is equivalent to 4,420 million parsecs or 14.4 ...

  9. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: where the subscript i refers to the initial displacement (at time t equal to zero). The difference between the two displacement vectors, , represents the location of B as seen from A.