Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  3. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...

  4. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes . For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  5. Greedy algorithm for Egyptian fractions - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm_for...

    The simplest fraction3 / y ⁠ with a three-term expansion is ⁠ 3 / 7 ⁠. A fraction4 / y ⁠ requires four terms in its greedy expansion if and only if y ≡ 1 or 17 (mod 24), for then the numerator −y mod x of the remaining fraction is 3 and the denominator is 1 (mod 6). The simplest fraction4 / y ⁠ with a four-term ...

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    [1] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric ...

  7. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    For each of them, compute the remainder by 4 (the second largest modulus) until getting a number congruent to 3 modulo 4. Then one can proceed by adding 20 = 5 × 4 at each step, and computing only the remainders by 3. This gives 4 mod 4 → 0. Continue 4 + 5 = 9 mod 41. Continue 9 + 5 = 14 mod 42. Continue 14 + 5 = 19 mod 43.

  8. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    Note that a d ≡ 1 (mod p) holds trivially for a ≡ 1 (mod p), because the congruence relation is compatible with exponentiation. And a d = a 2 0 d ≡ −1 (mod p) holds trivially for a ≡ −1 (mod p) since d is odd, for the same reason. That is why one usually chooses a random a in the interval 1 < a < p − 1.

  9. Erdős–Straus conjecture - Wikipedia

    en.wikipedia.org/wiki/Erdős–Straus_conjecture

    The greedy algorithm for Egyptian fractions finds a solution in three or fewer terms whenever is not 1 or 17 mod 24, and the 17 mod 24 case is covered by the 2 mod 3 relation, so the only values of for which these two methods do not find expansions in three or fewer terms are those congruent to 1 mod 24. [12]