Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    Luhn algorithm. The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [ 1]

  3. Check digit - Wikipedia

    en.wikipedia.org/wiki/Check_digit

    To calculate the check digit, take the remainder of (53 / 10), which is also known as (53 modulo 10), and if not 0, subtract from 10. Therefore, the check digit value is 7. i.e. (53 / 10) = 5 remainder 3; 10 - 3 = 7. Another example: to calculate the check digit for the following food item "01010101010x". Add the odd number digits: 0+0+0+0+0+0 = 0.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In chemistry, the last digit of the CAS registry number (a unique identifying number for each chemical compound) is a check digit, which is calculated by taking the last digit of the first two parts of the CAS registry number times 1, the previous digit times 2, the previous digit times 3 etc., adding all these up and computing the sum modulo 10.

  5. Luhn mod N algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_mod_N_algorithm

    Luhn mod N algorithm. The Luhn mod N algorithm is an extension to the Luhn algorithm (also known as mod 10 algorithm) that allows it to work with sequences of values in any even-numbered base. This can be useful when a check digit is required to validate an identification string composed of letters, a combination of letters and digits or any ...

  6. Casting out nines - Wikipedia

    en.wikipedia.org/wiki/Casting_out_nines

    The method works because the original numbers are 'decimal' (base 10), the modulus is chosen to differ by 1, and casting out is equivalent to taking a digit sum. In general any two 'large' integers, x and y, expressed in any smaller modulus as x' and y' (for example, modulo 7) will always have the same sum, difference or product as their ...

  7. Code 128 - Wikipedia

    en.wikipedia.org/wiki/Code_128

    The check digit is a weighted modulo-103 checksum. It is calculated by summing the start code 'value' to the products of each symbol's 'value' multiplied by its position's weight in the barcode string. The start symbol and first encoded symbol are in position 1. The sum of the products is then reduced modulo 103.

  8. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Computation of cyclic redundancy checks. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace ...

  9. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The smaller numbers, for use when subtracting, are the nines' complement of the larger numbers, which are used when adding. In mathematics and computing, the method of complements is a technique to encode a symmetric range of positive and negative integers in a way that they can use the same algorithm (or mechanism) for addition throughout the ...