Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation ). [ 2][ 3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    pc ⋅ M⊙−1 ⋅ ( km / s) 2. The gravitational constant G is a key quantity in Newton's law of universal gravitation. The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton 's law of universal gravitation and in Albert Einstein 's theory of general relativity.

  5. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    t. e. Newton's law of universal gravitation says that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated at ...

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Gravitational acceleration. In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag ). This is the steady gain in speed caused exclusively by gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the ...

  7. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.

  8. History of gravitational theory - Wikipedia

    en.wikipedia.org/wiki/History_of_gravitational...

    History of gravitational theory. In physics, theories of gravitation postulate mechanisms of interaction governing the movements of bodies with mass. There have been numerous theories of gravitation since ancient times. The first extant sources discussing such theories are found in ancient Greek philosophy.

  9. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Equations for a falling body. A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth -bound conditions. Assuming constant acceleration g due to Earth’s gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth’s ...