Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of ⁠ 1 / 2 ⁠. A proof or disproof of this would have far-reaching implications in number theory, especially for the distribution of prime ...

  3. Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Poincaré_conjecture

    e. In the mathematical field of geometric topology, the Poincaré conjecture ( UK: / ˈpwæ̃kæreɪ /, [ 2] US: / ˌpwæ̃kɑːˈreɪ /, [ 3][ 4] French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by Henri Poincaré ...

  4. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Fermat–Catalan conjecture. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many ...

  5. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line s = 1/2 + it, and he knew that all of its non-trivial zeros must lie in the range 0 ≤ Re(s) ≤ 1. He checked that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann hypothesis.

  6. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [ note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  7. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The concept of proof is formalized in the field of mathematical logic. [ 12] A formal proof is written in a formal language instead of natural language. A formal proof is a sequence of formulas in a formal language, starting with an assumption, and with each subsequent formula a logical consequence of the preceding ones.

  8. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    e. In mathematics, an impossibility theorem is a theorem that demonstrates a problem or general set of problems cannot be solved. These are also known as proofs of impossibility, negative proofs, or negative results. Impossibility theorems often resolve decades or centuries of work spent looking for a solution by proving there is no solution.

  9. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [ 1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [ 2] Since the problem had withstood the attacks ...