Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Conversely the period of the repeating decimal of a fraction ⁠ c / d ⁠ will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction2 / 7 ⁠ has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857. The period of the fraction2 / 7 ⁠ is ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [ 9] As with other fractions, the denominator ( b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  4. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions (not related to the binary number system) and Horus-Eye fractions (so called because many historians of mathematics believe that the symbols used for this system could be arranged to form the eye of Horus, although this has been disputed). [2] Horus ...

  5. 142857 - Wikipedia

    en.wikipedia.org/wiki/142857

    The 142857 number sequence is also found in several decimals in which the denominator has a factor of 7. In the examples below, the numerators are all 1, however there are instances where it does not have to be, such as ⁠ 2 / 7 ⁠ (0. 285714). For example, consider the fractions and equivalent decimal values listed below: ⁠ 1 / 7 ⁠ = 0 ...

  6. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    Fractions such as ⁠ 22 / 7 ⁠ and ⁠ 355 / 113 ⁠ are commonly used to approximate π, but no common fraction (ratio of whole numbers) can be its exact value. [20] Because π is irrational, it has an infinite number of digits in its decimal representation , and does not settle into an infinitely repeating pattern of digits.

  7. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  8. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    No even number greater than 2 is prime because any such number can be expressed as the product /. Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [9] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all ...

  9. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Zu Chongzhi is known to have computed π to be between 3.1415926 and 3.1415927, which was correct to seven decimal places. He also gave two other approximations of π : π ≈ 22 ⁄ 7 and π ≈ 355 ⁄ 113 , which are not as accurate as his decimal result.