Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid 's Elements . If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers. — Euclid, Elements Book VII, Proposition 30.

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    In the 1950s, Hillel Furstenberg introduced a proof by contradiction using point-set topology. Define a topology on the integers Z, called the evenly spaced integer topology, by declaring a subset U ⊆ Z to be an open set if and only if it is either the empty set, ∅, or it is a union of arithmetic sequences S(a, b) (for a ≠ 0), where

  4. Euclid–Euler theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid–Euler_theorem

    A perfect number is a natural number that equals the sum of its proper divisors, the numbers that are less than it and divide it evenly (with remainder zero). For instance, the proper divisors of 6 are 1, 2, and 3, which sum to 6, so 6 is perfect. A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two.

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The first such distribution found is π(N) ~ N / log(N), where π(N) is the prime-counting function (the number of primes less than or equal to N) and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N).

  6. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a ...

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes . For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  8. Parity of zero - Wikipedia

    en.wikipedia.org/wiki/Parity_of_zero

    Since 1 is not prime, nor does it have prime factors, it is a product of 0 distinct primes; since 0 is an even number, 1 has an even number of distinct prime factors. This implies that the Möbius function takes the value μ(1) = 1 , which is necessary for it to be a multiplicative function and for the Möbius inversion formula to work.

  9. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers, namely: [note 1] Euclid's lemma — If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b . For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019, and ...