Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator ( b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  3. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series ⁠ 1 2 ⁠ + ⁠ 1 4 ⁠ + ⁠ 1 8 ⁠ + ⁠ 1 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...

  4. 1/2 − 1/4 + 1/8 − 1/16 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%E2%88%92_1/4_%2B_1/8...

    1/21/4 + 1/81/16 + ⋯. Demonstration that 1 21 4 + 1 81 16 + ⋯ = 1 3. In mathematics, the infinite series 1/21/4 + 1/81/16 + ⋯ is a simple example of an alternating series that converges absolutely . It is a geometric series whose first term is 1 2 and whose common ratio is − 1 2, so its sum is.

  5. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...

  6. 1/4 + 1/16 + 1/64 + 1/256 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B...

    1/4 + 1/16 + 1/64 + 1/256 + ⋯. Archimedes' figure with a = ⁠ 3 4 ⁠. In mathematics, the infinite series ⁠ 1 4 ⁠ + ⁠ 1 16 ⁠ + ⁠ 1 64 ⁠ + ⁠ 1 256 ⁠ + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1] As it is a geometric series ...

  7. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    For example, in duodecimal, ⁠ 1 / 2 ⁠ = 0.6, ⁠ 1 / 3 ⁠ = 0.4, ⁠ 1 / 4 ⁠ = 0.3 and ⁠ 1 / 6 ⁠ = 0.2 all terminate; ⁠ 1 / 5 ⁠ = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; ⁠ 1 / 7 ⁠ = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...

  8. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Power of two. A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent . Powers of two with non-negative exponents are integers: 20 = 1, 21 = 2, and 2n is two multiplied by itself n times. [1] [2] The first ten powers of 2 for non-negative ...

  9. 1 + 2 + 4 + 8 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity. However, it can be manipulated to yield a number of ...