Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [ note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  4. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    Subtracting −0 is also trivial. The result can be only one of two cases. In case 1, operand 1 is −0 so the result is produced simply by subtracting 1 from 1 at every bit position. In case 2, the subtraction will generate a value that is 1 larger than operand 1 and an end-around borrow. Completing the borrow generates the same value as ...

  5. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman coding. Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not ...

  6. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    The metric space of length- n binary strings, with the Hamming distance, is known as the Hamming cube; it is equivalent as a metric space to the set of distances between vertices in a hypercube graph. One can also view a binary string of length n as a vector in by treating each symbol in the string as a real coordinate; with this embedding, the ...

  7. Largest known prime number - Wikipedia

    en.wikipedia.org/wiki/Largest_known_prime_number

    A prime number is a natural number greater than 1 with no divisors other than 1 and itself. According to Euclid's theorem there are infinitely many prime numbers, so there is no largest prime. Many of the largest known primes are Mersenne primes , numbers that are one less than a power of two, because they can utilize a specialized primality ...

  8. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    2.503 898 932 × 10 1 000 004: 1 000 000: 8. ... is always larger than the ... the prime number theorem can again be invoked to prove that the numbers of bits ...

  9. Units of information - Wikipedia

    en.wikipedia.org/wiki/Units_of_information

    When b is 2, the unit is the shannon, equal to the information content of one "bit" (a portmanteau of binary digit [2]). A system with 8 possible states, for example, can store up to log 2 8 = 3 bits of information. Other units that have been named include: Base b = 3 the unit is called "trit", and is equal to log 2 3 (≈ 1.585) bits. [3] Base ...