Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [ note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  3. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    The sum of a number and its ones' complement is an N-bit word with all 1 bits, which is (reading as an unsigned binary number) 2 N − 1. Then adding a number to its two's complement results in the N lowest bits set to 0 and the carry bit 1, where the latter has the weight (reading it as an unsigned binary number) of 2 N.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Without proper rendering support, you may see question marks, boxes, or other symbols. In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of known as the power set of has a strictly greater cardinality than itself. For finite sets, Cantor's theorem can be seen to be true ...

  5. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    Aleph-one. ℵ 1 is, by definition, the cardinality of the set of all countable ordinal numbers. This set is denoted by ω 1 (or sometimes Ω). The set ω 1 is itself an ordinal number larger than all countable ones, so it is an uncountable set. Therefore, ℵ 1 is distinct from ℵ 0. The definition of ℵ 1 implies (in ZF, Zermelo–Fraenkel ...

  6. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" [1] refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number (the term "complement" refers to such pairs of mutually additive inverse numbers, here in respect to a ...

  7. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.

  8. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    In computer programming, an integer overflow occurs when an arithmetic operation on integers attempts to create a numeric value that is outside of the range that can be represented with a given number of digits – either higher than the maximum or lower than the minimum representable value. The most common result of an overflow is that the ...

  9. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    In the case of large integers, the best asymptotic complexity is (() ⁡), with () the cost of -bit multiplication; this is near-linear and vastly smaller than the binary GCD algorithm's (), though concrete implementations only outperform older algorithms for numbers larger than about 64 kilobits (i.e. greater than 8×10 19265).