Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy - Cartesian coordinate system to an x′y′ -Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle . A point P has coordinates ( x, y) with respect to the ...

  3. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle ): a clockwise ...

  4. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation. Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise . The North Pole, also known as the Geographic North ...

  5. Magnetic declination - Wikipedia

    en.wikipedia.org/wiki/Magnetic_declination

    The angle between magnetic and grid meridians is called grid magnetic angle, grid variation, or grivation." [1] By convention, declination is positive when magnetic north is east of true north, and negative when it is to the west. Isogonic lines are lines on the Earth's surface along which the declination has the same constant value, and lines ...

  6. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L1. Then reflect P′ to its image P′′ on the other side of line L2. If lines L1 and L2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...

  7. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    This is the convention followed in this article. In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distance r along the radial line connecting the point to the fixed point of origin; the polar angle θ ...

  8. Planetary coordinate system - Wikipedia

    en.wikipedia.org/wiki/Planetary_coordinate_system

    The prime meridian is the centre of the near side of the Moon. A planetary coordinate system (also referred to as planetographic, planetodetic, or planetocentric) [ 1][ 2] is a generalization of the geographic, geodetic, and the geocentric coordinate systems for planets other than Earth. Similar coordinate systems are defined for other solid ...

  9. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotate the vector v = (X, Y, Z) around the rotation vector Q = (X, Y, Z). The angle of rotation will be θ = ‖ Q ‖. Calculate the cosine of the angle times the vector to rotate, plus sine of the angle times the axis of rotation, plus one minus cosine of the angle times the dot product of the vector and rotation axis times the axis of rotation.