Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [ note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  3. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Without proper rendering support, you may see question marks, boxes, or other symbols. In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of known as the power set of has a strictly greater cardinality than itself. For finite sets, Cantor's theorem can be seen to be true ...

  5. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    Subtracting −0 is also trivial. The result can be only one of two cases. In case 1, operand 1 is −0 so the result is produced simply by subtracting 1 from 1 at every bit position. In case 2, the subtraction will generate a value that is 1 larger than operand 1 and an end-around borrow. Completing the borrow generates the same value as ...

  6. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    Aleph-one. ℵ 1 is, by definition, the cardinality of the set of all countable ordinal numbers. This set is denoted by ω 1 (or sometimes Ω). The set ω 1 is itself an ordinal number larger than all countable ones, so it is an uncountable set. Therefore, ℵ 1 is distinct from ℵ 0. The definition of ℵ 1 implies (in ZF, Zermelo–Fraenkel ...

  7. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space ), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [ 2] Indeed, if we fix three ...

  8. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3] Rounding errors are due to inexactness in the representation of real numbers and the ...

  9. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    t. e. In statistics, the Bayesian information criterion ( BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC).