Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    Complex conjugate root theorem. In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [ 1] It follows from this (and the fundamental theorem of algebra) that, if the ...

  3. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity[ note 1] (also known as Euler's equation) is the equality where. is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler's formula when evaluated for .

  4. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the Companion matrix corresponding to the polynomial, implemented as the standard method [ 1] in MATLAB. The oldest method of finding all roots is to start by finding a single root. When a root r has been found, it can be ...

  5. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In the polynomial + the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Root-finding algorithm. In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot ...

  7. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number. The following table contains the decimal expansion of Im(z) for the first few nontrivial zeros:

  8. Eisenstein's criterion - Wikipedia

    en.wikipedia.org/wiki/Eisenstein's_criterion

    For example, in the case x 2 + x + 2 given above, the discriminant is −7 so that 7 is the only prime that has a chance of making it satisfy the criterion. Modulo 7, it becomes (x − 3) 2 — a repeated root is inevitable, since the discriminant is 0 mod 7. Therefore the variable shift is actually something predictable.

  9. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic ), the factorial satisfies. exactly when n is a prime number.