Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. The next-to-last equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both equations differ ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠dr dt⁠ ), and its acceleration (the second derivative of r, a = ⁠d2r dt2⁠ ), and time t. Euclidean vectors in 3D are denoted throughout in bold.

  4. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    L T−1. In kinematics, the speed (commonly referred to as v) of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity. [ 1] The average speed of an object in an interval of time is the distance travelled by the object divided by the ...

  5. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.

  6. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    Projectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth 's surface, and moves along a curved path (a trajectory) under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air ...

  7. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Average acceleration. Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  8. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame)

  9. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): = ′ (′) where a(t′) is the scale factor, t e is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of ...