Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. The next-to-last equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both equations differ ...

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame)

  4. Tobler's hiking function - Wikipedia

    en.wikipedia.org/wiki/Tobler's_hiking_function

    dx = distance, S = slope, θ = angle of slope (inclination). The velocity on the flat terrain is 5 km / h, the maximum speed of 6 km / h is achieved roughly at -2.86°. On flat terrain this formula works out to 5 km/h. For off-path travel, this value should be multiplied by 3/5, for horseback by 5/4. Pace. Pace is the reciprocal of speed.

  5. Naismith's rule - Wikipedia

    en.wikipedia.org/wiki/Naismith's_rule

    Pace is the reciprocal of speed. It can be calculated here from the following formula: [6] [19] p = p0·(1 + α·m) where: p = pace p0 = pace on flat terrain m = gradient uphill. This formula is true for m≥0 (uphill or flat terrain). [6] [19] It assumes equivalence of distance and climb by applying mentioned earlier α factor. [4] [19]

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠dr dt⁠ ), and its acceleration (the second derivative of r, a = ⁠d2r dt2⁠ ), and time t. Euclidean vectors in 3D are denoted throughout in bold.

  7. Fundamental diagram of traffic flow - Wikipedia

    en.wikipedia.org/wiki/Fundamental_diagram_of...

    The primary tool for graphically displaying information in the study traffic flow is the fundamental diagram. Fundamental diagrams consist of three different graphs: flow-density, speed-flow, and speed-density. The graphs are two dimensional graphs. All the graphs are related by the equation “flow = speed * density”; this equation is the ...

  8. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...

  9. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: = +, = +, where the subscript i refers to the initial displacement (at time t equal to zero).