Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing ...

  4. Interstate 84 (Pennsylvania–Massachusetts) - Wikipedia

    en.wikipedia.org/wiki/Interstate_84_(Pennsylvania...

    Interstate 84 ( I-84) is an Interstate Highway in the Northeastern United States that extends almost 375 miles (603 km) from Dunmore, Pennsylvania, near Scranton at an interchange with I-81 east to Sturbridge, Massachusetts, at an interchange with the Massachusetts Turnpike ( I-90 ). Among the major cities that the road passes through is ...

  5. Distance between two parallel lines - Wikipedia

    en.wikipedia.org/wiki/Distance_between_two...

    Given the equations of two non-vertical parallel lines. the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line. This distance can be found by first solving the linear systems. {\displaystyle {\begin {cases}y=mx+b_ {1}\\y=-x/m\,,\end {cases}}} and.

  6. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.

  7. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  8. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]

  9. Distance - Wikipedia

    en.wikipedia.org/wiki/Distance

    The distance travelled by an object is the length of a specific path travelled between two points, [6] such as the distance walked while navigating a maze. This can even be a closed distance along a closed curve which starts and ends at the same point, such as a ball thrown straight up, or the Earth when it completes one orbit .