Housing Watch Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Determination of the day of the week - Wikipedia

    en.wikipedia.org/wiki/Determination_of_the_day...

    The basic approach of nearly all of the methods to calculate the day of the week begins by starting from an "anchor date": a known pair (such as 1 January 1800 as a Wednesday), determining the number of days between the known day and the day that you are trying to determine, and using arithmetic modulo 7 to find a new numerical day of the week.

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinant. In mathematics, the determinant is a scalar -valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det (A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if ...

  4. Doomsday rule - Wikipedia

    en.wikipedia.org/wiki/Doomsday_rule

    Doomsday rule. The Doomsday rule, Doomsday algorithm or Doomsday method is an algorithm of determination of the day of the week for a given date. It provides a perpetual calendar because the Gregorian calendar moves in cycles of 400 years. The algorithm for mental calculation was devised by John Conway in 1973, [ 1][ 2] drawing inspiration from ...

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  6. Method of successive substitution - Wikipedia

    en.wikipedia.org/wiki/Method_of_successive...

    PROCEDURE. 1. Begin by rewriting the first congruence as an equation: x = 2a + 1, ∀a ∈ Z. 2. Rewrite the second congruence as an equation, and set the equation found in the first step equal to this equation, since x will substitute the x in the second congruence: x ≡ 2 (mod 3) x = 2a + 1 ≡ 2 (mod 3) 2a ≡ 1 (mod 3)

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  8. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.

  9. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    To calculate 16 n−k mod (8k + 1) quickly and efficiently, the modular exponentiation algorithm is done at the same loop level, not nested. When its running 16x product becomes greater than one, the modulus is taken, just as for the running total in each sum. Now to complete the calculation, this must be applied to each of the four sums in turn.